Single-Nucleotide Polymorphisms (SNPs): Difference between revisions

no edit summary
(Created page with "All human beings are 99.9% identical in their genetic makeup meaning that at out of the 3 billion genes we all have 99.9% are the same in all humans. The places where it is po...")
 
No edit summary
Line 1: Line 1:
== Nitrogenous Bases (ATCG) ==
DNA chromosomes look like long twisty ladders. The longest chromosome (1) has over 249 million rungs and the smallest (21) has over 48 million. In total there are over 3 billion of these rungs in human DNA. Each rung in the ladder will contain a pair of nitrogenous bases: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G). A and T are always paired together and C and G are paired together. Although two SNPs will always be together at each spot, only one of the two values at each spot will do any coding, the other is just a backbone that holds the structure together. The side that does the coding is called the + strand and the side that is the backbone is the - strand. Sometimes in an A T pair, the A will be the coding gene and the T will be the backbone, other times it will be the reverse and the same is true for C and G pairs. For simplicity, DNA companies will therefore just record the value of a person's + strand at each spot they test.
== Single-Nucleotide Polymorphisms (SNPs) ==
All human beings are 99.9% identical in their genetic makeup meaning that at out of the 3 billion genes we all have 99.9% are the same in all humans. The places where it is possible for a variance to occur are called, SNP's which stands for Single-nucleotide polymorphisms. SNP's are the main force behind DNA and what gives it it's genealogical value. When two individuals have enough matching SNP's in a row, this becomes a matching segment. The more matching SNP's there are, the bigger the segment is. If a segment is big enough (bigger than 15cm's), then the segment must be identical by descend (IBD) which means the two individuals share that segment because they both descend from a common ancestor who passed on that segment of DNA to both of them. The more matching segments there and the bigger they are, the closer two test takers are probably related. By testing a sample of a person's SNP's and then comparing them to everyone else in the database, it is possible to identify a person's genetic relatives. Most major companies will test 500-600k SNP's.
All human beings are 99.9% identical in their genetic makeup meaning that at out of the 3 billion genes we all have 99.9% are the same in all humans. The places where it is possible for a variance to occur are called, SNP's which stands for Single-nucleotide polymorphisms. SNP's are the main force behind DNA and what gives it it's genealogical value. When two individuals have enough matching SNP's in a row, this becomes a matching segment. The more matching SNP's there are, the bigger the segment is. If a segment is big enough (bigger than 15cm's), then the segment must be identical by descend (IBD) which means the two individuals share that segment because they both descend from a common ancestor who passed on that segment of DNA to both of them. The more matching segments there and the bigger they are, the closer two test takers are probably related. By testing a sample of a person's SNP's and then comparing them to everyone else in the database, it is possible to identify a person's genetic relatives. Most major companies will test 500-600k SNP's.